Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 42(1): 10, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294571

RESUMO

Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-ß-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.


Assuntos
Antineoplásicos , Neoplasias , Ratos , Animais , Cálcio , Cisplatino/toxicidade , Nociceptividade , Ratos Sprague-Dawley , Hiperalgesia , Antineoplásicos/toxicidade
2.
Immunol Cell Biol ; 102(4): 240-255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265162

RESUMO

Therapy-induced senescence (TIS) is a primary response to chemotherapy, contributing to untoward treatment outcomes such as evasion of immunosurveillance. Despite the established role of the complement system in the immune response to cancer, the role of complement in mediating the immune response against senescent tumor cells remains poorly understood. To explore this relationship, we exposed lung adenocarcinoma (A549), breast adenocarcinoma (MCF7) and pancreatic carcinoma (Panc-1) cell lines to sublethal doses of either etoposide or doxorubicin to trigger TIS. Identification of TIS was based on morphological changes, upregulation of the senescence-associated ß-galactosidase, p21Cip1 induction and lamin B1 downregulation. Using immunofluorescence microscopy, quantitative PCR, ELISA of conditioned media and in silico analysis, we investigated complement activation, complement protein expression, C3 levels in the conditioned media of senescent cells and secreted complement proteins as part of the senescence-associated secretory phenotype (SASP), respectively. In cell lines undergoing TIS, complement-related changes included (i) activation of the terminal pathway, evidenced by the deposition of C5b-9 on senescent cells; (ii) an increase in the expression of CD59 and complement factor H and (iii) in A549 cells, an elevation in the expression of C3 with its secretion into the medium. In addition, increased C3 expression was observed in breast cancer samples expressing TIS hallmarks following exposure to neoadjuvant chemotherapy. In conclusion, TIS led to the activation of complement, upregulation of complement regulatory proteins and increased C3 expression. Complement appears to play a role in shaping the cancer microenvironment upon senescence induction.


Assuntos
Doxorrubicina , Neoplasias , Humanos , Meios de Cultivo Condicionados , Doxorrubicina/farmacologia , Linhagem Celular , Fatores de Transcrição , Ativação do Complemento , Proteínas do Sistema Complemento
3.
Sci Rep ; 13(1): 15903, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741850

RESUMO

Neoadjuvant chemotherapy (NAC) is a frequently utilized approach to treat locally advanced breast cancer, but, unfortunately, a subset of tumors fails to undergo complete pathological response. Apoptosis and therapy-induced senescence (TIS) are both cell stress mechanisms but their exact role in mediating the pathological response to NAC is not fully elucidated. We investigated the change in expression of PAMIP1, the gene encoding for the pro-apoptotic protein, NOXA, following NAC in two breast cancer gene datasets, and the change in NOXA protein expression in response to NAC in 55 matched patient samples (pre- and post-NAC). PAMIP1 expression significantly declined in post-NAC in the two sets, and in our cohort, 75% of the samples exhibited a downregulation in NOXA post-NAC. Matched samples that showed a decline in NOXA post-NAC were examined for TIS based on a signature of downregulated expression of Lamin-B1 and Ki-67 and increased p16INK4a, and the majority exhibited a decrease in Lamin B1 (66%) and Ki-67 (80%), and increased p16INK4a (49%). Since our cohort consisted of patients that did not develop complete pathological response, such findings have clinical implications on the role of TIS and NOXA downregulation in mediating suboptimal responses to the currently established NAC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina , Antígeno Ki-67/metabolismo , Terapia Neoadjuvante
4.
Cancer Chemother Pharmacol ; 91(4): 345-360, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36964435

RESUMO

PURPOSE: Despite the beneficial effects of chemotherapy, therapy-induced senescence (TIS) manifests itself as an undesirable byproduct. Preclinical evidence suggests that tumor cells undergoing TIS can re-emerge as more aggressive divergents and contribute to recurrence, and thus, senolytics were proposed as adjuvant treatment to eliminate senescent tumor cells. However, the identification of TIS in clinical samples is essential for the optimal use of senolytics in cancer therapy. In this study, we aimed to detect and quantify TIS using matched breast cancer samples collected pre- and post-exposure to neoadjuvant chemotherapy (NAC). METHODS: Detection of TIS was based on the change in gene and protein expression levels of three senescence-associated markers (downregulation of Lamin B1 and Ki-67 and upregulation of p16INK4a). RESULTS: Our analysis revealed that 23 of 72 (31%) of tumors had a shift in the protein expression of the three markers after exposure to NAC suggestive of TIS. Gene expression sets of two independent NAC-treated breast cancer samples showed consistent changes in the expression levels of LMNB1, MKI67 and CDKN2A. CONCLUSIONS: Collectively, our study shows a more individualized approach to measure TIS hallmarks in matched breast cancer samples and provides an estimation of the extent of TIS in breast cancer clinically. Results from this work should be complemented with more comprehensive identification approaches of TIS in clinical samples in order to adopt a more careful implementation of senolytics in cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Senoterapia , Inibidor p16 de Quinase Dependente de Ciclina/genética
5.
Molecules ; 25(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861277

RESUMO

Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.


Assuntos
Aptâmeros de Nucleotídeos/química , Fenômenos Químicos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Imunoconjugados/química , Ligantes , Lipídeos/química , Estrutura Molecular , Nanopartículas/química , Técnica de Seleção de Aptâmeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA